La importancia del agua para la vida
Definir de manera concisa qué constituye la vida en la Tierra es una tarea difícil, e igualmente lo es hacer una lista de los principales requisitos ambientales que son estrictamente necesarios para la vida.
Definir de manera concisa qué constituye la vida en la Tierra es una tarea difícil, e igualmente lo es hacer una lista de los principales requisitos ambientales que son estrictamente necesarios para la vida.
En general, los científicos están de acuerdo en que la vida necesita un medio líquido para transportar las moléculas gracias a las cuales existe esa vida. Para la vida en la Tierra, este medio líquido es el agua. Se han propuesto muchos otros líquidos como sustitutos potenciales del agua, como amoniaco (NH3), metano (CH4), o etano (C2H6). Sin embargo, como veremos, el agua es una molécula versátil, y de alguna manera única, extremadamente compatible para la vida en la Tierra, y probablemente en otros planetas.
Al comenzar nuestra reflexión acerca de la importancia del agua para la vida, es necesario saber que el agua es probablemente el líquido más abundante en el universo. Pero ¿hace eso que sea necesariamente el mejor candidato para la vida? ¿Cuáles son las propiedades del agua que la hacen tan adecuada? Comencemos por examinar una única molécula de agua. El agua está compuesta por dos átomos de hidrógeno y uno solo de oxígeno; en total hay dos enlaces químicos en la molécula.
Al comenzar nuestra reflexión acerca de la importancia del agua para la vida, es necesario saber que el agua es probablemente el líquido más abundante en el universo. Pero ¿hace eso que sea necesariamente el mejor candidato para la vida? ¿Cuáles son las propiedades del agua que la hacen tan adecuada? Comencemos por examinar una única molécula de agua. El agua está compuesta por dos átomos de hidrógeno y uno solo de oxígeno; en total hay dos enlaces químicos en la molécula.
Polaridad de la molécula de agua
Cada uno de los átomos de hidrógeno está unido al oxígeno por un enlace covalente, un enlace formado al compartir uno o más electrones entre dos átomos. En el caso del enlace covalente oxígeno-hidrógeno, los electrones no se reparten igual entre los dos átomos. De hecho, el oxígeno es un átomo muy electronegativo, y puede parecer que acapara los electrones. El oxígeno atraerá los electrones, así que habrá una mayor densidad de electrones alrededor de este átomo que alrededor del hidrógeno. Por tanto, si fuéramos a examinar sólo uno de los enlaces covalentes en una molécula de agua, notaríamos que el átomo de oxígeno es ligeramente negativo y el de hidrógeno ligeramente positivo; diríamos que el enlace covalente es polar. Esto puede no parecer importante todavía, pero la interacción entre los átomos de hidrógeno y de oxígeno de distintas moléculas de agua es la clave para entender la singularidad de este líquido.
Cada uno de los átomos de hidrógeno está unido al oxígeno por un enlace covalente, un enlace formado al compartir uno o más electrones entre dos átomos. En el caso del enlace covalente oxígeno-hidrógeno, los electrones no se reparten igual entre los dos átomos. De hecho, el oxígeno es un átomo muy electronegativo, y puede parecer que acapara los electrones. El oxígeno atraerá los electrones, así que habrá una mayor densidad de electrones alrededor de este átomo que alrededor del hidrógeno. Por tanto, si fuéramos a examinar sólo uno de los enlaces covalentes en una molécula de agua, notaríamos que el átomo de oxígeno es ligeramente negativo y el de hidrógeno ligeramente positivo; diríamos que el enlace covalente es polar. Esto puede no parecer importante todavía, pero la interacción entre los átomos de hidrógeno y de oxígeno de distintas moléculas de agua es la clave para entender la singularidad de este líquido.
Se puede decir que en una molécula de agua el átomo de oxígeno tiene carga neta negativa, y que el de hidrógeno tiene carga neta positiva. Cuando dos objetos con cargas opuestas se acercan, experimentarán una fuerza de atracción entre ellos, como cuando dos imanes se juntan. Y al contrario, dos objetos con cargas similares experimentarán una fuerza repulsiva entre ellos. Probablemente pueden imaginar que los átomos de hidrógeno de una molécula de agua serán entonces atraídos por el átomo de oxígeno de otra molécula de agua. La atracción entre estos dos átomos de distintas moléculas es un ejemplo de enlace por puentes de hidrógeno.
Puentes de Hidrógeno
Los puentes de hidrógeno no son enlaces tan fuertes como los enlaces en los que los electrones se comparten o intercambian, y sólo se dan cuando las moléculas están bastante cerca unas de otras. Sin embargo, la propensión del agua a establecer puentes de hidrógeno es lo que la dota de su carácter único. Los enlaces de hidrógeno son los responsables de que el hielo flote en agua, el agua permanezca líquida en un gran rango de temperaturas y tenga un alto calor específico, y las cadenas de ADN permanezcan unidas.
Puentes de Hidrógeno
Los puentes de hidrógeno no son enlaces tan fuertes como los enlaces en los que los electrones se comparten o intercambian, y sólo se dan cuando las moléculas están bastante cerca unas de otras. Sin embargo, la propensión del agua a establecer puentes de hidrógeno es lo que la dota de su carácter único. Los enlaces de hidrógeno son los responsables de que el hielo flote en agua, el agua permanezca líquida en un gran rango de temperaturas y tenga un alto calor específico, y las cadenas de ADN permanezcan unidas.
¿Alguna vez se han dado cuenta de que los estanques y lagunas nunca se congelan del todo en los inviernos fríos? ¿Se han preguntado por qué? Bueno, se puede echarle la culpa a nuestro amigo el puente de hidrógeno. A medida que el agua líquida se vuelve más y más fría, la cantidad de puentes de hidrógeno entre las moléculas de agua se incrementa gradualmente. Cuando el agua se congela y se convierte en hielo, los puentes de hidrógeno estarán sosteniendo las moléculas de agua de manera que formen un entramado cristalino como el que se muestra en la figura a continuación:
Al considerar una masa de hielo, sus moléculas forman una inmensa red tridimensional altamente ordenada que evita que las moléculas se acerquen mucho entre sí. El puente de hidrógeno que se establece, hace que las moléculas de agua adopten una estructura que deja huecos hexagonales que forman una especie de canales a través de la red tridimensional. En este entramado, las moléculas de agua están en realidad más dispersas que cuando están en estado líquido, lo que significa que ocupan un mayor volumen. La masa de las moléculas de agua no cambia. Si aumentamos el volumen y mantenemos la masa, disminuimos la densidad de una sustancia. Podemos determinar esta densidad de manera bastante sencilla con la simple ecuación matemática d=m/V, donde d es la densidad, m la masa y V el volumen. Por lo tanto, el hielo es MENOS denso que el agua, lo que lo hace flotar. Las diferencias de densidad son muy pequeñas, pero tienen una enorme importancia. Debido a este comportamiento anómalo del agua, si se introduce una botella de agua líquida en un congelador, estalla, ya que al convertirse el agua líquida en hielo, este ocupa más volumen que el líquido.
Pensemos en ese estanque en el invierno frío. A medida que comienza a congelarse, todo el hielo flota. Finalmente, la superficie del estanque se podría congelar completamente, aislando un oasis líquido debajo, en el que la vida podría sobrevivir al invierno. Esta característica del agua, el que sea menos densa cuando se congela y que flote, permite que los medios acuáticos sobrevivan de año en año. ¿se pueden imaginar lo que le pasaría a la vida acuática si el estanque se solidificara al congelarse todos los inviernos?
¿Por qué se derrite el hielo?
Cuando la energía externa o medio ambiental es superior a la que se encuentra en la masa de hielo, existe mayor vibración entre las moléculas de agua, y, como consecuencia, se rompe dicha red tridimensional para dar paso al agua líquida que se caracteriza por su falta de forma.
Cuando la energía externa o medio ambiental es superior a la que se encuentra en la masa de hielo, existe mayor vibración entre las moléculas de agua, y, como consecuencia, se rompe dicha red tridimensional para dar paso al agua líquida que se caracteriza por su falta de forma.
Propiedades fisicoquímicas
1. Acción disolvente
2. Elevada fuerza de cohesión
3. Elevada fuerza de adhesión
4. Gran calor específico
5. Elevado calor de vaporización
1. Acción disolvente
2. Elevada fuerza de cohesión
3. Elevada fuerza de adhesión
4. Gran calor específico
5. Elevado calor de vaporización
Permaneciendo Liquida
El enlace de hidrógeno también es responsable de dos importantes propiedades del agua: su capacidad para permanecer líquida en un gran rango de temperaturas y su alto calor específico. ¿Por qué son importantes para la vida estas dos propiedades? En la Tierra, una gran proporción de la composición de los organismos vivos es de agua. Imaginemos que, en lugar de permanecer líquida en un rango de temperatura de 100 grados centígrados, el agua sólo se mantuviera en ese estado en un rango de 20 grados. A lo largo del día, las temperaturas en la Tierra pueden variar más de 20 grados. Por ejemplo, en un día extremo en Arizona las temperaturas pueden ir de unos 20ºC a 45ºC. Si el agua no permaneciera líquida a esas temperaturas, sino que pasara de líquido a gas y comenzara a hervir, los efectos serían devastadores para la vida. Imagínese nuestr@ amable lector(a), ¿qué les pasaría a las células de nuestros cuerpos?, que están constituidas mayoritariamente por agua. O considere ud. el caso opuesto, en el que el cambio de temperatura supusiera la congelación del agua. Si el líquido del que depende la vida estuviera congelado permanentemente, ¿cómo se llevarían a cabo las reacciones químicas necesarias para vivir? Por suerte, el agua permanece líquida en un alto rango de temperaturas: 100ºC. Este rango es suficientemente grande para asegurar que el agua en las células nunca se congele o hierva y dificulte la existencia de vida.
Calor Específico
Igual de importante que este gran rango de temperaturas es el calor específico del agua. El calor específico es una manera de describir la cantidad de energía necesaria para aumentar la temperatura de una sustancia. En el caso del agua, es la cantidad de energía con la que se consigue aumentar un grado centígrado un gramo de agua, y es igual a 4.186 Julios (J). Todo material tiene un calor específico único que depende de su composición química. El agua tiene un calor específico particularmente alto con respecto a otros líquidos. Por ejemplo, el calor específico del amoniaco (NH3) es 0.470 J/gºC. Si los océanos estuvieran hechos de amoniaco en lugar de agua, se necesitaría una cantidad de energía bastante menor para cambiar la temperatura del océano. Esto significa que, en el curso de un año normal, habría cambios globales de temperatura que podrían tener como resultado inundaciones generalizadas y glaciaciones anuales. El calor específico del agua ayuda a que la Tierra mantenga su clima relativamente estable.
Igual de importante que este gran rango de temperaturas es el calor específico del agua. El calor específico es una manera de describir la cantidad de energía necesaria para aumentar la temperatura de una sustancia. En el caso del agua, es la cantidad de energía con la que se consigue aumentar un grado centígrado un gramo de agua, y es igual a 4.186 Julios (J). Todo material tiene un calor específico único que depende de su composición química. El agua tiene un calor específico particularmente alto con respecto a otros líquidos. Por ejemplo, el calor específico del amoniaco (NH3) es 0.470 J/gºC. Si los océanos estuvieran hechos de amoniaco en lugar de agua, se necesitaría una cantidad de energía bastante menor para cambiar la temperatura del océano. Esto significa que, en el curso de un año normal, habría cambios globales de temperatura que podrían tener como resultado inundaciones generalizadas y glaciaciones anuales. El calor específico del agua ayuda a que la Tierra mantenga su clima relativamente estable.
A un nivel más elemental, el puente de hidrógeno juega un papel vital en la capacidad de la vida para reproducirse y desarrollarse. El ADN de nuestras células es bicatenario: hay dos cadenas de nucleótidos que se unen por los puentes de hidrógeno que se establecen entre ellas.
Ya mencionamos antes que los puentes de hidrógeno, considerados como enlaces individuales, son muy débiles. Sin embargo, cuando tenemos cientos de puentes de hidrógeno juntos, puede darse una estructura relativamente fuerte y estable. Los nucleótidos de una cadena establecen dos o tres puentes de hidrógeno con los nucleótidos complementarios de la otra hebra, dependiendo del par de nucleótidos. Las dos cadenas forman la hélice de ADN con la que se transmite la información genética de una generación a la siguiente. Sin estas moléculas, sería muy difícil que la vida se perpetuara en el planeta.
Hasta ahora hemos examinado la naturaleza del enlace de hidrógeno y cómo influye en la importancia del agua para la vida. El agua tiene otras características que también la hacen importante para la vida en la Tierra. Primero, el agua actúa como un disolvente excelente para una gran variedad de compuestos. Como disolvente, el agua ayuda a transportar moléculas dentro de la célula. Además es la causante de que las proteínas adquieran su forma tridimensional, permitiendo que catalicen reacciones químicas específicas dentro de las células. Por último, puede actuar como barrera, si hay suficiente cantidad. Por ejemplo, durante la historia de la Tierra primitiva no había una capa protectora en la atmósfera que frenara la dañina radiación ultravioleta (UV). Algunos astrobiólogos sostienen que las primeras formas de vida aparecieron en el océano, donde había suficiente profundidad para que el agua absorbiera la radiación UV y protegiera a las vidas en ciernes.
Funciones del agua
Las funciones del agua se relacionan íntimamente con las propiedades anteriormente descritas. Se podrían resumir en los siguientes puntos
Funciones del agua
Las funciones del agua se relacionan íntimamente con las propiedades anteriormente descritas. Se podrían resumir en los siguientes puntos
1. Soporte o medio donde ocurren las reacciones metabólicas
2. Amortiguador térmico
3. Transporte de sustancias
4. Lubricante, amortiguadora del roce entre órganos
5. Favorece la circulación y turgencia
6. Da flexibilidad y elasticidad a los tejidos
7. Puede intervenir como reactivo en reacciones del metabolismo, aportando hidrogeniones o hidroxilos al medio.
les recomiendo este excelente tutor en el enlace de la universidad de Murcia
http://www.um.es/molecula/sales01.htm
y el aula virtual de biología de la misma universidad, algo que les puede ayudar con sus hijos
http://www.um.es/molecula/
2. Amortiguador térmico
3. Transporte de sustancias
4. Lubricante, amortiguadora del roce entre órganos
5. Favorece la circulación y turgencia
6. Da flexibilidad y elasticidad a los tejidos
7. Puede intervenir como reactivo en reacciones del metabolismo, aportando hidrogeniones o hidroxilos al medio.
les recomiendo este excelente tutor en el enlace de la universidad de Murcia
http://www.um.es/molecula/sales01.htm
y el aula virtual de biología de la misma universidad, algo que les puede ayudar con sus hijos
http://www.um.es/molecula/
Salu2 a tod@s
Mr. Moon
La vida es un 10% como viene y un 90% como la tomamos
No hay comentarios:
Publicar un comentario